Abstract

Oropouche virus (OROV) is an emerging pathogen which causes Oropouche fever and meningitis in humans. Several outbreaks of OROV in South America, especially in Brazil, have changed its status as an emerging disease, but no vaccine or specific drug target is available yet. Our approach was to identify the epitope-based vaccine candidates as well as the ligand-binding pockets through the use of immunoinformatics. In this report, we identified both T-cell and B-cell epitopes of the most antigenic OROV polyprotein with the potential to induce both humoral and cell-mediated immunity. Eighteen highly antigenic and immunogenic CD8+ T-cell epitopes were identified, including three 100% conserved epitopes (TSSWGCEEY, CSMCGLIHY, and LAIDTGCLY) as the potential vaccine candidates. The selected epitopes showed 95.77% coverage for the mixed Brazilian population. The docking simulation ensured the binding interaction with high affinity. A total of five highly conserved and nontoxic linear B-cell epitopes “NQKIDLSQL,” “HPLSTSQIGDRC,” “SHCNLEFTAITADKIMSL,” “PEKIPAKEGWLTFSKEHTSSW,” and “HHYKPTKNLPHVVPRYH” were selected as potential vaccine candidates. The predicted eight conformational B-cell epitopes represent the accessibility for the entered virus. In the posttherapeutic strategy, ten ligand-binding pockets were identified for effective inhibitor design against emerging OROV infection. Collectively, this research provides novel candidates for epitope-based peptide vaccine design against OROV.

Highlights

  • Oropouche virus (OROV) is the most common Orthobunyavirus of the Bunyaviridae family, an important causative agent of Oropouche fever in human widespread in South America, especially in Brazil

  • Proenca-Modena and coworkers demonstrated that the MAVS, IRF-3 and IRF-7, and MAVS-dependent type I IFN signaling pathway (IFNAR) have dominant roles in restricting OROV infection, and this signaling in nonmyeloid cells greatly contributes to the host defense against orthobunya viruses [6]

  • The query for Oropouche virus structural and nonstructural proteins resulted in a total of 208 hits in the Virus Pathogen Database and Analysis Resource (ViPR) database

Read more

Summary

Introduction

Oropouche virus (OROV) is the most common Orthobunyavirus of the Bunyaviridae family, an important causative agent of Oropouche fever in human widespread in South America, especially in Brazil. This fever is clinically characterized as an acute febrile urban arboviral disease [1, 2]. The OROV can enter into the central nervous system (CNS) and can spread into the brain parenchyma tissue through some infective cycles. It causes inflammation and severe manifestations of encephalitis [5]. Proenca-Modena and coworkers demonstrated that the MAVS (mitochondrial antiviral-signaling protein), IRF-3 (interferon regulatory transcription factor) and IRF-7, and MAVS-dependent type I IFN signaling pathway (IFNAR) have dominant roles in restricting OROV infection, and this signaling in nonmyeloid cells greatly contributes to the host defense against orthobunya viruses [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call