Abstract

Pneumonia is a major endemic disease around the world, and an effective vaccine is the need of the hour to fight against the disease. When there are no appropriate antiviral and associated therapies available, vaccine development becomes even more essential. Therefore, in the present study, a variety of immunoinformatics techniques was utilized to develop a novel multi-epitope vaccine that targets the highly immunodominant type 3 fimbrial protein of Klebsiella pneumoniae, the causal organism for pneumonia. The putative B and T cell epitopes were predicted from the protein and screened for antigenicity, toxicity, allergenicity, and cross-reactivity with human proteomes. Subsequently, the selected epitopes were joined with the help of linkers to form a robust vaccine construct. In addition, an adjuvant was applied to the N-terminal of the construct to improve the immunogenicity of the vaccine. The physicochemical properties, solubility, the secondary and tertiary structure of the final vaccine were also established. MD simulations for 100 ns were employed to assess the stability of the vaccine-TLR-2 docked complex. The final vaccine was optimized and cloned in pET28a (+) vector with His-tag to achieve maximum vaccine protein expression for ease of purification. Immune simulation results indicated the potency of this vaccine candidate as a probable therapeutic agent. In conclusion, the overall results of various immunoinformatics tools and methods employed revealed that the constructed multi-epitope vaccine exhibits a high potential for stimulating both B and T-cells immune responses against pneumonia infection. However, experimental immunological studies are required to corroborate the viability of the novel multi-epitope construct as a commercial vaccine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.