Abstract

BackgroundBrucellosis caused by B. melitensis is one of the most important common diseases between humans and livestock. Currently, live attenuated vaccines are used for this disease, which causes many problems, and unfortunately, there is no effective vaccine for human brucellosis. The aim of our research was to design a recombinant vaccine containing potential immunogenic epitopes against B. melitensis. MethodsIn this study, using immunoinformatics approaches, 3 antigens Omp31, Omp25, and Omp28 were identified and the amino acid sequence of the selected antigens was determined in NCBI. Signal peptides were predicted by SignaIP-5.0 server. To predict B-cell epitopes from ABCpred and Bcepred servers, to predict MHC-I epitopes from RANKPEP and SYFPEITHI servers, to predict MHC-II epitopes from RANKPEP and MHCPred servers, and to predict CTL epitopes were used from the CTLPred server. Potentially immunogenic final epitopes were joined by flexible linkers. Finally, allergenicity (AllerTOP 2.0 server), antigenicity (Vaxijen server), physicochemical properties (ProtParam server), solubility (Protein-sol server), secondary (PSIPRED and GRO4 servers) and tertiary structure (I-TASSER server), refinement (GalaxyWEB server), validation (ProSA-web, Molprobity, and ERRAT servers), and optimization of the codon sequence (JCat server) of the structure of the multi-epitope vaccine were analyzed. ResultsThe analysis of immunoinformatics tools showed that the designed vaccine has high quality, acceptable physicochemical properties, and can induce humoral and cellular immune responses against B. melitensis bacteria. In addition, the high expression level of recombinant antigens in the E. coli host was observed through in silico simulation. ConclusionAccording to the results in silico, the designed vaccine can be a suitable candidate to fight brucellosis and in vitro and in vivo studies are needed to evaluate the research of this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.