Abstract
Diabetes mellitus is globally the major cause for metabolic syndrome in STZ-induced diabetic rats, leading to mortality. Treatment of diabetes by oral hypoglycemic agents causes adverse side effects and thus treatment with natural herbal drugs like swertiamarin is promising. Swertiamarin, an active compound isolated from Enicostemma littorale possesses antidiabetic activity and enhances β cell regeneration which causes reversal of diabetes. The present study aims at the following: (1) to evaluate antidiabetic, anti-hyperlipidaemic, activity of swertiamarin in Streptozotocin- induced diabetic rats using biomarkers. (2) To assess histopathological alterations in Pancreas, Liver, Kidney, and Heart of swertiamarin-treated STZ-induced diabetic rats and confirm cytoprotective activity of swertiamarin by Immunohistochemistry and morphometric investigations. Diabetes was induced intraperitoneally in male Wistar rats by Streptozotocin (STZ 50mg/kg). After STZ-induction, hyperglycemic rats were treated with doses of swertiamarin orally (15, 25, 50mg/kg) each for 28days. Glibenclamide (2.5mg/kg), a sulphonyl urea, was used as a standard drug. The glycemic control was measured by the biochemical parameter assays. Histopathology analysis of organs and immunohistochemistry of islets were carried out. Our study results showed that oral administration of swertiamarin at a dosage of 15, 25, 50mg/kg bw for 28days resulted in a significant (p<0.01) decrease in fasting blood glucose, HbA1c, TC, TG, LDL, and increased the levels of hemoglobin, plasma insulin, TP, body weight, and HDL levels significantly (p<0.01) when compared to STZ-induced diabetic rats, as confirmed by immunohistochemical studies. The effect of swertiamarin on Carbohydrate-metabolizing enzymes was investigated and found to have normal therapeutic activity. Histopathological studies of Pancreas of swertiamarin-treated diabetic rats showed regeneration of islets when compared to STZ-induced diabetic rats, as confirmed by immunohistochemical studies. Our research results clearly substantiate that swertiamarin possesses antihyperglycemic, antihyperlipidemic, cytoprotective, and immune reactivity and also a broad spectrum potential of treating diabetes and other complications related to diabetes and hence can be developed into a potent oral antidiabetic drug.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.