Abstract

The neuropeptide somatostatin is widely distributed in the CNS and is believed to play a role as a neurotransmitter or a neuromodulator. Somatostatin mediates its actions by the binding of the peptide to high affinity membrane receptors. The genes for five somatostatin receptor types have been cloned recently and Northern blotting and in situ hybridization studies have shown that the transcripts of all five types are expressed in the CNS. Here we report the cellular distribution of somatostatin sst 2(a) receptor protein in the adult rat CNS, using a polyclonal anti-peptide antibody directed against a portion of the C-terminal domain of the receptor. The specificity of the affinity-purified antibody was demonstrated by Western blotting and immunolabelling of cells transfected with a hemagglutinin epitope-tagged version of the sst 2(a) receptor. Immunohistochemistry showed a distinct distribution of the receptor protein in the rat brain. Cells and processes were labelled in a number of areas, including the basolateral amygdala, the locus coeruleus, the endopiriform nucleus, the deep layers of the cerebral cortex, the subiculum, the claustrum, the habenula, the interpenduncular nucleus, the hippocampus and the central grey. In the spinal cord, the substantia gelatinosa showed strongly-labelled cell bodies and their processes. This study provides an improved understanding of the distribution of the sst 2(a) receptor in rat brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.