Abstract

The present study investigated the localization of the adenosine 5′-diphosphate (ADP)-selective P2Y12 purinoceptors in the rat carotid body using multilabeling immunofluorescence. Punctate immunoreactive products for P2Y12 were distributed in chemoreceptive type I cells immunoreactive to vesicular nucleotide transporter (VNUT) or dopamine beta-hydroxylase, but not in S100B-immunoreactive glial-like type II cells. P2Y12 immunoreactivity was localized in cell clusters containing VNUT-immunoreactive type I cells surrounded by the perinuclear cytoplasm and cytoplasmic processes of type II cells immunoreactive for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, which hydrolyze extracellular nucleotide tri- and/or di-phosphates. In ATP bioluminescence assays using carotid bodies, the degradation of extracellular ATP was attenuated in the presence of the selective NTPDases inhibitor ARL67156, suggesting ATP-degrading activity by NTPDases in the tissue. These results suggest that ATP released from type I cells is degraded into ADP and adenosine 5′-monophosphate by NTPDases expressed in type II cells, and that ADP modulates type I cells via P2Y12 purinoceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call