Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor is a 22-kDa glycoprotein that was originally identified as a secreted product of cultured human macrophages. Although the growth factor mRNA has been identified in various cells and tissues, the tissue distribution of the protein itself has rarely been demonstrated. In this study, the EGF-like growth factor was detected immunohistochemically in a variety of human skin samples by indirect immunofluorescence using a polyclonal rabbit antiserum raised against residues 26-41 of mature heparin-binding EGF. The keratinocytes of a variety of epithelium-derived structures demonstrated reproducible, specific staining for the EGF. In normal tissues, this staining was prominent in the basal cells of the epidermis and in the epithelial cells lining epidermal appendages such as hair follicles, sebaceous sweat glands and eccrine sweat glands. In addition, specific staining was detected in skin cancers derived from the basal epithelial cell layer, including basal and squamous cell carcinomas of the skin, with no staining detected in melanoma specimens. Immunoreactive heparin-binding EGF was characteristically associated with the surface of cells. With minor exceptions, the immunoreactive sites are identical to the known EGF receptor distribution in the skin, and suggest that keratinocyte-derived heparin-binding EGF may act in concert with other EGF family members in processes such as skin morphogenesis and wound repair, as well as in the development of skin cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.