Abstract

The spectrum of the Guillain-Barré Syndrome (GBS) has recently been widened by the newly identified forms of acute motor axonal neuropathy (AMAN) and acute motor sensory axonal neuropathy (AMSAN). An important question has been raised regarding the possibility for the axon to be a target in immune-mediated damage. Although myelin breakdown is the characteristic feature of classic acute inflammatory demyelinating polyradiculoneuropathy (AIDP), axonal degeneration may occasionally be observed in this form, especially in cases with explosive onset and severe clinical course. Immunohistochemical findings of five frozen sural nerves biopsies of patients with GBS (AIDP variant) tested with a panel of monoclonal antibodies raised against different molecules implicated in immune-mediated processes have principally disclosed an immunoreactivity of tumor necrosis factor-alpha (TNF-alpha) on both Schwann cell membranes and in myelinated and unmyelinated axons. On the other hand, interleukin 1-beta (IL1-beta) labeled Schwann cells, endothelial cells and macrophages; interferon-gamma (IFN-gamma) was observed both in endothelial cells and lymphocytes. Membrane attack complex (C5b-9) deposits were observed on Schwann cell membranes and finally intercellular adhesion molecule-1 (ICAM-1) was localized both on endothelial cells and macrophages. Our findings strongly suggest that TNF-alpha is an important factor in the cascade of events leading to immune-mediated demyelination and axonal damage in GBS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.