Abstract

The first rate-limiting step in the conversion of arachidonic acid to PGs is catalyzed by cyclooxygenase (Cox). Two isoforms of Cox have been identified, Cox-1 (constitutively expressed) and Cox-2 (inducible form), which are the products of two different genes. In this study we describe the immunohistochemical localization of Cox-1 and -2 in the human male fetal and adult reproductive tracts. There was no Cox-1 expression in fetal samples (prostate, seminal vesicles, or ejaculatory ducts), and only minimal expression in adult tissues. There was no expression of Cox-2 in the fetal prostate. In a prepubertal prostate there was some Cox-2 expression that localized exclusively to the smooth muscle cells of the transition zone. In adult hyperplastic prostates, Cox-2 was strongly expressed in smooth muscle cells, with no expression in the luminal epithelial cells. Cox-2 was strongly expressed in epithelial cells of both fetal and adult seminal vesicles and ejaculatory ducts. The Cox-2 staining intensity in the fetal ejaculatory ducts during various times of gestation correlated with previously reported testosterone production rates by the fetal testis. These data indicate that Cox-2 is the predominant isoform expressed in the fetal male reproductive tract, and its expression may be regulated by androgens. The distinct cell type-specific expression patterns of Cox-2 in the prostate (smooth muscle) vs. the seminal vesicles and ejaculatory ducts (epithelium) may reflect the different roles of PGs in these tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.