Abstract

Substantial in vitro and in vivo data support a role for extracellular adenosine 5;-triphosphate (ATP) and associated P2 receptors in cochlear function. However, the precise spatiotemporal distribution of the involved receptor protein(s) has not been determined. By using a specific antiserum and immunoperoxidase labeling, the tissue distribution of the P2X(2) subunit of the ATP-gated ion channel was investigated. Here, we describe the first extensive immunohistochemical mapping of P2X(2) receptor subunits in the adult and developing rat cochlea. In the adult, immunoreactivity was observed in most cells bordering on the endolymphatic compartment (scala media), particularly in the supporting cells. Hair cells were not immunostained by the P2X(2) antiserum, except for outer hair cell stereocilia. In addition, weak immunolabeling was observed in some spiral ganglion neurons. P2X(2) receptor subunit protein expression during labyrinthine ontogeny was detected first on embryonic day 19 in the spiral ganglion and in associated nerve fibers extending to the inner hair cells. Immunostaining also was observed underneath outer hair cells, and, by postnatal day 6 (P6), intense immunolabeling was seen in the synaptic regions of both types of hair cell. Supporting cells of the sensory epithelium were labeled at P0. This labeling became most prominent from the onset of cochlear function (P8-P12). Conversely, expression in the vascular stria declined from this time. By P21, the pattern of immunolabeling was similar to that found in the adult. The localization and timing of P2X(2) immunoreactivity suggest involvement of extracellular ATP and associated ATP-gated ion channels in important physiological events, such as inner ear ontogeny, sound transduction, cochlear micromechanics, electrochemical homeostasis, and auditory neurotransmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.