Abstract
The ontogeny of the gamma-aminobutyric acid (GABA)-positive neurons in the brain of Xenopus laevis tadpoles was investigated by means of immunohistochemistry, using specific antibodies both against GABA and its biosynthetic enzyme, glutamate decarboxylase (GAD). The results obtained with the two antisera were comparable. The GABA system differentiates very early during development. At stages 35/36, numerous GABA-positive neurons were seen throughout the prosencephalon and formed two main bilateral clusters within the lateral walls of the forebrain that ran caudally toward the hindbrain. Other GABA-immunolabeled cell bodies, together with a conspicuous network of GABAergic fibers, were seen in the posterior hypothalamus. In the spinal cord, the lateral marginal zone was GABA-positive, as were Rohon-Beard neurons, interneurons, and Kolmer-Agdhur cells. A very rich GABA innervation was observed in the pars intermedia of the pituitary. At stage 50, plentiful immunopositive neurons and fibers were found in the telencephalic hemispheres, the diencephalon, and the mesencephalon (optic tectum and tegmentum). By stage 54, the number of GABA-immunoreactive neurons in the posterior hypothalamus had decreased, so that, at stage 58, there were very few GABA-labeled cell bodies in the dorsolateral walls of the infundibulum, despite a strong GABAergic innervation within the median eminence and the pars intermedia. From stage 58 to stage 66, the distribution pattern was very similar to that described in the adult X. laevis and in other amphibian species. These results point to transient GABA expression within the hypothalamus, possibly related to either 1) a naturally occurring cell death or 2) a phenotypic switch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.