Abstract

IntroductionInsulin-like growth factor binding protein-3 (IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGF-independent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates EGF (epidermal growth factor) and interacts with HER-2. Previously, high IGFBP-3 levels in breast cancers have been determined by enzyme-linked immunosorbent assay and immunoradiometric assay methods. In vitro, IGFBP-3's mechanisms of action may involve cell membrane binding and nuclear translocation. To evaluate tumour-specific IGFBP-3 expression and its subcellular localisation, this study examined immunohistochemical IGFBP-3 expression in a series of invasive ductal breast cancers (IDCs) with synchronous ductal carcinomas in situ (DCIS) in relation to clinicopathological variables and patient outcome.MethodsImmunohistochemical expression of IGFBP-3 was evaluated with the sheep polyclonal antiserum (developed in house) with staining performed as described previously.ResultsIGFBP-3 was evaluable in 101 patients with a variable pattern of cytoplasmic expression (positivity of 1+/2+ score) in 85% of invasive and 90% of DCIS components. Strong (2+) IGFBP-3 expression was evident in 32 IDCs and 40 cases of DCIS. A minority of invasive tumours (15%) and DCIS (10%) lacked IGFBP-3 expression. Nuclear IGFBP-3 expression was not detectable in either invasive cancers or DCIS, with a consistent similarity in IGFBP-3 immunoreactivity in IDCs and DCIS. Positive IGFBP-3 expression showed a possible trend in association with increased proliferation (P = 0.096), oestrogen receptor (ER) negativity (P = 0.06) and HER-2 overexpression (P = 0.065) in invasive tumours and a strong association with ER negativity (P = 0.037) in DCIS. Although IGFBP-3 expression was not an independent prognosticator, IGFBP-3-positive breast cancers may have shorter disease-free and overall survivals, although these did not reach statistical significance.ConclusionsIncreased breast epithelial IGFBP-3 expression is a feature of tumorigenesis with cytoplasmic immunoreactivity in the absence of significant nuclear localisation in IDCs and DCIS. There are trends between high levels of IGFBP-3 and poor prognostic features, suggesting that IGFBP-3 is a potential mitogen. IGFBP-3 is not an independent prognosticator for overall survival or disease-free survival, to reflect its dual effects on breast cancer growth regulated by complex pathways in vivo that may relate to its interactions with other growth factors.

Highlights

  • Insulin-like growth factor binding protein-3(IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGFindependent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates epidermal growth factor (EGF) and interacts with HER-2

  • IGFBP-3 expression was evident in 32 invasive ductal breast cancers (IDCs) and 40 cases of ductal carcinomas in situ (DCIS)

  • Increased breast epithelial IGFBP-3 expression is a feature of tumorigenesis with cytoplasmic immunoreactivity in the absence of significant nuclear localisation in IDCs and DCIS

Read more

Summary

Introduction

(IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGFindependent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates EGF (epidermal growth factor) and interacts with HER-2. The IGFs are modulated by a family of six high-affinity IGF binding proteins, of which IGFBP-3 predominates in serum and is upregulated in breast cancer cell lines, including breast epithelium [1,5,6]. Both IGFs (IGF-I and IGF-II) have a preferential stromal expression and together with epithelial IGFBP-3 have a significant paracrine influence on breast epithelial growth [1,7]. The particular significance of IGFBP-3 in regulating epithelial cell growth has been highlighted because the actions of many growth inhibitors, apoptotic agents and anti-cancer treatments (transforming growth factor-β, retinoids, p53 and anti-oestrogens) are, at least in part, mediated by their ability to stimulate local IGFBP-3 production [1,2,3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.