Abstract

The term “transdifferentiation” has been used to describe the apparent phenotypic conversion of chick embryo neural retina Müller glial cells into lens-like cells in vitro. This phenotypic conversion is characterized by expression of such lens-specific proteins as delta crystallin and has been viewed as an example of cells transforming from the phenotype of a given tissue to that of another. We have identified a population of neuroglia-like cells in the embryonic chick retina which express high levels of delta crystallin as a function of normal development. The position and morphology of these cells is quite distinctive in that they form a loose meshwork which defines the boundary between the neural retina and the optic nerve head. These “boundary” cells are detectable as early as Day 5 of development through hatching. However, the meshwork structure formed by the cells is only readily observed between Days 8 and 9 of development. Double-immunolabeling procedures comparing delta crystallin staining to that of glial and neuronal markers suggest that these cells are a form of retinal Müller glial cell. The results show that under appropriate microenvironmental conditions, expression of delta crystallin falls into the normal repertoire of retinoblast cells. The results also demonstrate the presence of a cellular boundary defining the junction between the neural retina and the optic nerve, tissues that are ontogenetically and structurally continuous but functionally distinct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call