Abstract
To investigate the immunohistochemical characteristics of a highly porous synthetic bone substitute and a cross-linked collagen membrane for guided bone regeneration. Three experimental groups were randomly allocated at chronic peri-implant dehiscence defect in 8 beagle dogs: (i) biphasic calcium phosphate covered by a cross-linked collagen membrane (test group), (ii) deproteinized bovine bone mineral covered by a natural collagen membrane (positive control) and (iii) no treatment (negative control). After 8 and 16weeks of submerged healing, dissected tissue blocks were processed for immunohistochemical analysis. Seven antibodies were used to detect the remaining osteogenic and angiogenic potential, and quantitative immunohistochemical analysis was done by software. The antigen reactivity of alkaline phosphatase was significantly higher in the test group compared to the positive and negative controls, and it maintained till 16weeks. The intensity of osteocalcin was significantly higher in the positive control at 8weeks than the other groups, but significantly decreased at 16weeks and no difference was found between the groups. A significant large number of TRAP-positive cells were observed in the test group mainly around the remaining particles at 16weeks. The angiogenic potential was comparable between the groups showing no difference in the expression of transglutaminase II and vascular endothelial growth factor. Guided bone regeneration combining a highly porous biphasic calcium phosphate synthetic biomaterial with a crosslinked collagen membrane, resulted in extended osteogenic potential when compared to the combination of deproteinized bovine bone mineral and a native collagen membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.