Abstract

Fos immunostaining was used as a marker of neuronal activity following intracranial self-stimulation (ICSS) of the medial forebrain bundle (MFB) in the rat, and was combined with immunostaining for tyrosine hydroxylase (TH), serotonin (5-HT), gamma-aminobutyric acid (GABA), or NR1 (one of the glutamate N-methyl- D-aspartate receptor subunits) for purposes of neurochemical identification. ICSS induced a significant but different degree of increase in the number of Fos-immunopositive (Fos+) cells in the six brainstem monoaminergic nuclei examined, which included the ventral tegmental area (VTA), substantia nigra pars compacta (SNc), dorsal raphe nucleus (DR), median raphe nucleus (MR), locus coeruleus (LC), and A7 noradrenaline cells. Densely labelled Fos+ cells were observed in the LC following ICSS, and many of these Fos+ cells were colocalized with TH. Similarly, many of Fos+ cells in the A7 and DR/MR were colocalized with TH and 5-HT, respectively. By contrast, a smaller number of Fos+ cells was detected in the VTA and SNc following the ICSS, and in these regions the majority of Fos+ cells were not colocalized with TH. Although results among regions quantitatively differed, the ICSS induced a significant increase in the number of double-labelled cells (GABA+/Fos+ or NR1+/Fos+) in all of the VTA, DR, and LC, in which the ICSS produced an ipsilaterally weighted increase in Fos-like immunoreactivity. These results suggest that ICSS of the MFB induces differential Fos expression within monoaminergic and GABAergic neurons in brainstem monoaminergic nuclei under modulation by glutamatergic afferents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call