Abstract

The Drosophila ovary represents an outstanding model for investigating tissue homeostasis. Females continuously produce oocytes throughout their lifetime. However, as females age, fecundity declines, in part, due to changes in ovarian niche function and germline stem cell (GSC) homeostasis. Understanding the dynamics of GSC maintenance will provide needed insights into how coordinated tissue homeostasis is lost during aging. Critical regulators of GSC maintenance are proteins that reside in the nuclear lamina (NL), including the NL proteins emerin and Barrier-to-Autointegration Factor (BAF). Continued investigation of how emerin, BAF, and other NL proteins contribute to GSC function depends upon the availability of antibodies for NL proteins, a limiting resource. In this chapter, we discuss strategies for using clustered regularly interspaced short palindromic repeats (CRISPR) genomic editing to produce endogenously tagged NL genes to circumvent this obstacle, using the generation of the gfp-baf allele as an example. We describe strategies for validation of tagged alleles. Finally, we outline methods for immunohistochemical analysis of resulting tagged-NL proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.