Abstract

We have combined environmental scanning electron microscopy (ESEM) and immunogold labelling (IGL) for the analysis of cell morphology and surface protein detection on human fine needle aspiration, which is processed in thin uniform monolayer (a single layer of cells) on a glass slide by Thin Prep technology. Among scanning electron microscopy techniques, we choose the environmental modality (ESEM) because it allows a slight manipulation of biological samples and an operational time comparable with cytological techniques. Moreover, the Thin Prep technology confirmed a reproducible cell monolayer on glass smear, minimizing problems for the determination of appropriate amount of material per slide. The first experimental data in ESEM-IGL on biological samples with fine needle aspiration Thin Prep, in human thyroid nodules, showed that cells retained their morphology and provided a clear IGL. The optimization of conditions (i.e. vacuum pressure, temperature and relative humidity) confirmed the possibility to observe an immunolabelled biological sample and morphological signal, joined with compositional informations, due to peculiar characteristics of gaseous secondary electron detector in ESEM. The ESEM-IGL and fine needle aspiration Thin Prep could be used in combination for the interpretation of cell morphology and cell surface immunolabelling. Our paper suggests this use as a powerful diagnostic tool in a pre-surgical evaluations, opening a new applicative window for electron microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.