Abstract

The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus.

Highlights

  • The adaptive immune system in vertebrates is founded on lymphocytes expressing a vast, anticipatory repertoire of antigen receptors

  • Lymphocytes provide a limitless repertoire of antigen receptors, but each lymphocyte expresses only one kind of receptor per cell in order to provide specific recognition and response to pathogen invasion

  • Immunoglobulin (Ig) heavy chain (H) exclusion depends on ordered activation of component parts of the highly complex, three-megabase IgH locus in a process that differentiates between the two alleles

Read more

Summary

Introduction

The adaptive immune system in vertebrates is founded on lymphocytes expressing a vast, anticipatory repertoire of antigen receptors. A single species of immunoglobulin (B cells) or T cell receptor (T cells) is allowed per cell This restriction is termed allelic exclusion, and it describes the requirements for monoallelic receptor gene expression in each cell (for a recent review, see [1]). Elucidating their divergent and shared regulatory processes will allow us to understand the basis for allelic exclusion, the phenomenon that ensures specific recognition and response to pathogen invasion

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.