Abstract

BackgroundHumoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood. The aim of the present investigation was to determine whether, in subjects exposed to malaria, GM and KM allotypes--genetic markers of immunoglobulin γ and κ-type light chains, respectively--contribute to the magnitude of natural antibody responses to target antigens that are leading vaccine candidates for protection against Plasmodium vivax.MethodsSera from 210 adults, who had been exposed to malaria transmission in the Brazilian Amazon endemic area, were allotyped for several GM and KM determinants by a standard hemagglutination-inhibition method. IgG subclass antibodies to P. vivax apical membrane antigen 1 (PvAMA-1) and merozoite surface protein 1 (PvMSP1-19) were determined by an enzyme-linked immunosorbent assay. Multiple linear regression models and the non-parametric Mann-Whitney test were used for data analyses.ResultsIgG1 antibody levels to both PvMSP1-19 and PvAMA-1 antigens were significantly higher (P = 0.004, P = 0.002, respectively) in subjects with the GM 3 23 5,13,14 phenotype than in those who lacked this phenotype.ConclusionsResults presented here show that immunoglobulin GM allotypes contribute to the natural antibody responses to P. vivax malaria antigens. These findings have important implications for the effectiveness of vaccines containing PvAMA-1 or PvMSP1-19 antigens. They also shed light on the possible role of malaria as one of the evolutionary selective forces that may have contributed to the maintenance of the extensive polymorphism at the GM loci.

Highlights

  • Humoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood

  • The distribution of GM and KM phenotypes in relation to IgG subclass antibody levels to PvMSP1-19 and PvAMA-1 is given in Tables 1 and 2, respectively

  • A major finding of the present investigation is that IgG1 antibody levels to both PvMSP1-19 and PvAMA-1 antigens were significantly higher in subjects with the GM 3 23 5,13,14 phenotype than in those who lack this phenotype

Read more

Summary

Introduction

Humoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood. The aim of the present investigation was to determine whether, in subjects exposed to malaria, GM and KM allotypes–genetic markers of immunoglobulin g and -type light chains, respectively– contribute to the magnitude of natural antibody responses to target antigens that are leading vaccine candidates for protection against Plasmodium vivax. P. vivax is a widely distributed human malarial parasite, prevalent in South America, Asia and Oceania, and the 70-80 million cases currently recorded annually are of global public inclusion in a vaccine against blood stages of malaria. AMA-1 is an 83-kDa antigen synthesized during the mature stages of the parasite; it is thought to be involved in the process of erythrocyte invasion [4]. MSP1-19 is a portion of MSP1 produced after two processing steps and remains attached to the newly formed ring stage parasite after invasion [5]. Antibodies to MSP1-19 and AMA-1 inhibited invasion of red blood cells [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.