Abstract

In science, the prairie voles are ideal models for studying the regulatory mechanisms of social behavior in humans. The utility of the prairie vole as a biology model can be further enhanced by characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the prairie vole immunoglobulin heavy and light chain genes. The prairie vole IgH locus on chromosome 1 spans over 1600kb, and consists of at least 79 VH segments (28 potentially functional genes, 2 ORFs and 49 pseudogenes), 7 DH segments, 4 JH segments, four constant region genes (μ, γ, ɛ, and α), and two transmembrane regions of δ gene. The Igκ locus, found on three scaffolds (JH996430, JH996605 and JH996566), contains a totle of 124 Vκ segments (47 potentially functional genes, 1 ORF and 76 pseudogenes), 5 Jκ segments and a single Cκ gene. Two different transcriptional orientations were determined for these Vκ gene segments. In contrast, the Igλ locus on scaffold JH996473 and JH996489 includes 21 Vλ gene segments (14 potentially functional genes, 1 ORF and 6 pseudogenes), all with the same transcriptional polarity as the downstream Jλ-Cλ cluster. Phylogenetic analysis and sequence alignments suggested the prairie vole's large germline VH, Vκ and Vλ gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.