Abstract

Diversification of the primary antibody repertoire in chickens is achieved by a gene conversion process that uses a set of immunoglobulin variable (IgV) pseudogenes as templates. Studies usingthe chicken DT40 B lymphoma cell line have shown that this gene conversion is dependent on activation-induced deaminase, which deaminates deoxycytidine to deoxyuridine in the IgV gene. The mechanism by which the resultant deoxyuridine/deoxyguanosine (dU/dG) mismatch acts to initiate the gene conversion process is unknown but likely involves either (i) recognition of the dU/dG pair by the mismatch repair complex or (ii) recognition of the dU itself by uracil-DNA glycosylase. To discriminate these possibilities, we have investigated the effects on IgV gene conversion of inhibiting uracil-DNA glycosylase. We find that such inhibition diminishes gene conversion, biasing instead towards point mutations. These results demonstrate that IgV gene conversion in DT40 cells is substantially dependent on uracil excision and implies that it proceeds by a pathway involving an abasic site, which could be acted upon by an apyrimidinic endonuclease to generate a DNA strand break facilitating the conversion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.