Abstract

Triple-negative breast cancer (TNBC) presented as high heterogeneous immunogenicity that lacks useful clinical signatures to risk-stratify immune-benefit subtypes. We hypothesized that molecular-based phenotypic characterization of TNBC tumors and their immunity may overcome these challenges. We enrolled 1,145 patients with TNBC for analysis. Through combining algorithm integration analysis and TNBC datasets, a tumor immune risk score (TIRS) panel consisting of 8 potential biomarkers was identified. The TIRS panel represented excellent effectiveness as an independent predictor. High- and low risk stratification of patients was further achieved by TIRS, and significant survival and immune-infiltration pattern differences were found in each cohort, both at the transcriptome and protein levels. Non-negative matrix factorization clustering further identified four different tumor immune microenvironment types (TIMTs), among which TIMT-II was associated with the best prognosis and immune status, whereas TIMT-IV had the opposite effect, TIMT-III was associated with highly unstable genomes, and TIMT-I displayed stem-cell-related characteristics along with high stromal scores and may have extensive enrichment of tumor-associated fibroblasts and vascular cells. In conclusion, our TIRS panel could serve as a robust prognostic signature and provide therapeutic benefits for immunotherapy. Additionally, coordinating four TIMTs may be helpful for clinical decision-making in TNBC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.