Abstract

Helicobacter pylori (H. pylori) infection remains a significant global public health problem. Vaccine, especially edible vaccine, is considered to be effective in the management of H. pylori infections. By using recombinant technology, Lactococcus lactis (L. lactis) could serve as an antigen-delivering vehicle for the development of edible vaccine. The aim of this study was to produce edible UreB (urease B) vaccine derived from L. lactis against H. pylori. The UreB subunit is the most effective and common immunogen of all strains of H. pylori. The UreB was produced as a chimeric protein fused with IL-2 (human interleukin 2) as the mucosal adjuvant. Mucosal immunization of mice with recombinant L. lactis NZ9000 containing the UreB–IL-2 protein elicited more anti-UreB antibody that specifically bounded to the purified bacterial UreB protein and more cytokines such as IFN-γ, IL-4, and IL-17, and had a lower H. pylori burden and urease activity than control mice. These results suggest that the recombinant L. lactis expressing UreB–IL-2 can be potentially used as an edible vaccine for controlling H. pylori infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.