Abstract

The continuously emerging of severe acute respiratory syndrome coronavirus-2 variants of concern (VOCs) led to a decline in effectiveness of the first-generation vaccines. Therefore, optimized vaccines and vaccination strategies, which show advantages in protecting against VOCs, are urgently needed. Here we constructed an optimized DNA vaccine plasmid containing built-in CpG adjuvant, and designed vaccine candidates encoding five forms of antigens derived from Wuhan-Hu-1. The results showed that plasmid with receptor binding domain (RBD) dimer-Fc fusing antigen (2RBD-Fc) induced the highest level of RBD-specific IgG and neutralizing antibodies in mice. Then 2dRBD-Fc and 2omRBD-Fc vaccines, respectively derived from delta and omicron VOCs, were constructed. The 2dRBD-Fc induced potent humoral and cellular immune responses, while the immunogenicity of 2omRBD-Fc was low. We also observed that sequential immunization with 2RBD-Fc, 2dRBD-Fc and 2omRBD-Fc effectively elicited neutralizing antibodies against each immunized strain, and RBD-specific T cell responses. To be noted, the Wuhan-Hu-1, delta and omicron neutralizing antibody titers induced by sequential immunization were comparable to that induced by repetitive immunization with 2RBD-Fc, 2dRBD-Fc or 2omRBD-Fc respectively. The results suggest that sequential immunization with DNA vaccines encoding potent antigens derived from different VOCs, may be a promising strategy to elicit immune responses against multiple variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call