Abstract

BackgroundHepatitis C virus (HCV) infection is a major health problem worldwide, affecting an estimated 2–3 % of human population. An HCV vaccine, however, remains unavailable. High viral diversity poses a challenge in developing a vaccine capable of eliciting a broad neutralizing antibody response against all HCV genotypes. The small surface antigen (sHBsAg) of hepatitis B virus (HBV) has the ability to form highly immunogenic subviral particles which are currently used as an efficient anti-HBV vaccine. It also represents an attractive antigen carrier for the delivery of foreign sequences. In the present study, we propose a bivalent vaccine candidate based on novel chimeric particles in which highly conserved epitope of HCV E2 glycoprotein (residues 412–425) was inserted into the hydrophilic loop of sHBsAg.ResultsThe expression of chimeric protein was performed in an unconventional, Leishmania tarentolae expression system resulting in an assembly of particles which retained immunogenicity of both HCV epitope and sHBsAg protein. Direct transmission electron microscopy observation and immunogold staining confirmed the formation of spherical particles approximately 22 nm in diameter, and proper foreign epitope exposition. Furthermore, the sera of mice immunized with chimeric particles proved reactive not only to purified yeast-derived sHBsAg proteins but also HCV E2 412–425 synthetic peptide. Most importantly, they were also able to cross-react with E1E2 complexes from different HCV genotypes.ConclusionsFor the first time, we confirmed successful assembly of chimeric sHBsAg virus-like particles (VLPs) in the L. tarentolae expression system which has the potential to produce high-yields of properly N-glycosylated mammalian proteins. We also proved that chimeric Leishmania-derived VLPs are highly immunogenic and able to elicit cross-reactive antibody response against HCV. This approach may prove useful in the development of a bivalent prophylactic vaccine against HBV and HCV and opens up a new and low-cost opportunity for the production of chimeric sHBsAg VLPs requiring N-glycosylation process for their proper functionality and immunogenicity.

Highlights

  • Hepatitis C virus (HCV) infection is a major health problem worldwide, affecting an estimated 2–3 % of human population

  • E1 and E2 glycoproteins constitute a potential target for the development of a prophylactic HCV vaccine, as they are involved in virus– host interaction, and the antibodies directed against these proteins seem to neutralize HCV [4]

  • The present study focused on construction, characterization and immunological studies of novel sHBsAg chimeric particles produced in the L. tarentolae expression system

Read more

Summary

Introduction

Hepatitis C virus (HCV) infection is a major health problem worldwide, affecting an estimated 2–3 % of human population. The small surface antigen (sHBsAg) of hepatitis B virus (HBV) has the ability to form highly immunogenic subviral particles which are currently used as an efficient anti-HBV vaccine. It represents an attractive antigen carrier for the delivery of foreign sequences. Due to the fact that resolution of HCV infection is mediated by a broad and potent T cell response [5], and by the neutralizing antibodies (nAbs) raised mainly against HCV E1E2 heterodimer [6, 7], a prophylactic vaccine consisting of adjuvanted recombinant E1E2 heterodimer was proposed. Phase I clinical trials indicated that immunization with glycosylated envelope proteins resulted in potent nAbs and CD 4+ T-cell responses [8, 9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call