Abstract

Brucella poses a great threat to animal and human health. Vaccination is the most promising strategy in the effort to control Brucella abortus (B. abortus) infection, but the currently used live vaccines interfere with diagnostic tests and could potentially result in disease outbreak. Therefore, new subunit vaccines and combined immunization strategies are currently under investigation. In this study, immunogenicity and protection ability of a recombinant adenovirus and plasmid DNA vaccine co-expressing P39 and lumazine synthase proteins of B. abortus were evaluated based on the construction of the two molecular vaccines. Four immunization strategies (single adenovirus, single DNA, adenovirus/DNA, DNA/adenovirus) were investigated. The results showed that the immunization strategy of DNA priming followed by adenovirus boosting induced robust humoral and cellular immune responses, and it significantly reduced the numbers of B. abortus in a mouse model. These results suggest that it could be a potential antigen candidate for development of a new subunit vaccine against B. abortus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call