Abstract

BackgroundOne of the major obstacles in the design of an effective vaccine against HIV-1 is the hypervariability of the HIV-1 envelope glycoprotein. Most HIV-1 vaccine candidates have utilized envelope glycoprotein from a single virus isolate, but to date, none of them elicited broadly reactive humoral immunity. Herein, we hypothesised that a cocktail of HIV-1 gp120 proteins containing multiple epitopes may increase the breadth of immune responses against HIV-1. We compared and evaluated the immunogenicity of HIV-1 vaccines containing either gp120 protein alone or in combinations of four or fourteen gp120s from different primary HIV-1 isolates in immunized hamsters.ResultsWe amplified and characterized 14 different gp120s from primary subtype B isolates with both syncytium and non-syncytium inducing properties, and expressed the proteins in Chinese Hamster Ovary (CHO) cell lines. Purified proteins were used either alone or in combinations of four or fourteen different gp120s to vaccinate golden hamsters. The polyvalent vaccine showed higher antibody titers to HIV-1 subtype B isolates MN and SF162 compared to the groups that received one or four gp120 proteins. However, the polyvalent vaccine was not able to show higher neutralizing antibody responses against HIV-1 primary isolates. Interestingly, the polyvalent vaccine group had the highest proliferative immune responses and showed a substantial proportion of cross-subtype CD4 reactivity to HIV-1 subtypes B, C, and A/EConclusionAlthough the polyvalent approach achieved only a modest increase in the breadth of humoral and cellular immunity, the qualitative change in the vaccine (14 vs. 1 gp120) resulted in a quantitative improvement in vaccine-induced immunity.

Highlights

  • One of the major obstacles in the design of an effective vaccine against HIV-1 is the hypervariability of the HIV-1 envelope glycoprotein

  • Amplification products corresponding to the full length of gp120 (1.6 kb) containing constant and hypervariable regions were generated by RT-PCR

  • Most of the HIV-1 gp120 sequences were clustered from the HIV-1 subtype B isolate MN

Read more

Summary

Introduction

One of the major obstacles in the design of an effective vaccine against HIV-1 is the hypervariability of the HIV-1 envelope glycoprotein. Most HIV-1 vaccine candidates have utilized envelope glycoprotein from a single virus isolate, but to date, none of them elicited broadly reactive humoral immunity. We hypothesised that a cocktail of HIV-1 gp120 proteins containing multiple epitopes may increase the breadth of immune responses against HIV-1. We compared and evaluated the immunogenicity of HIV-1 vaccines containing either gp120 protein alone or in combinations of four or fourteen gp120s from different primary HIV-1 isolates in immunized hamsters. Genetic variability in HIV-gp120 between groups M, N and O affect the induction of Nabs [6,7]. These factors complicate the design of an effective candidate vaccine against HIV

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call