Abstract

Dendritic cells (DCs) are potent antigen-presenting cells capable of inducing strong immune responses to weak tumor-associated antigens. Among various DC-based approaches, cancer immunotherapy with DC–tumor fusion hybrids offers advantages of polyclonal stimulation of a diverse array of tumor antigens. However, prevalent fusion methods using chemical fusogens such as polyethylene glycol often result in toxicity and low fusion efficiency. In this article, we describe an electrofusion technique, applicable to processing large numbers of cells with consistent and high fusion efficiency. Generation of fusion hybrids was verified by unequivocal experimental evidence. In animal models, fusion hybrids expressed the mature DC-like phenotype. They stimulated both CD4 and CD8 tumor-specific T cells to secrete interferon-γ in vitro. In immunotherapy, a single vaccination with DC–tumor fusion cells along with interleukin-12 as an adjuvant eradicated tumors established in the skin nd lung. These results provide an impetus for treating cancer patients with similarly generated cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.