Abstract

Replacement therapy using recombinant factor VIII (rFVIII) is currently the most common therapy for hemophilia A, a bleeding disorder caused by the deficiency of FVIII. However, 15–30% of patients develop inhibitory antibodies against administered rFVIII, which complicates the therapy. Encapsulation or association of protein with lipidic structures can reduce this immune response. Previous studies developed and characterized rFVIII-containing phosphatidylserine (PS) cochleate cylinders using biophysical techniques. It was hypothesized that these structures may provide a reduction in immunogenicity while avoiding the rapid clearance by the reticuloendothelial system (RES) previously observed with liposomal vesicles of similar composition. This study investigated in vivo behavior of the cochleates containing rFVIII including immunogenicity and pharmacokinetics in hemophilia A mice. The rFVIII-cochleate complex significantly reduced the level of inhibitory antibody developed against rFVIII following intravenous (i.v.) administration. Pharmacokinetic modeling allowed assessment of in vivo release kinetics. Cochleates acted as a delayed release delivery vehicle with an input peak of cochleates showed limited RES uptake and associated rFVIII displayed a similar disposition to the free protein upon release from the structure. Incomplete disassociation from the complex limits systemic availability of the protein. Further formulation efforts are warranted to regulate the rate and extent of release of rFVIII from cochleate complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call