Abstract

BackgroundThere is an urgent need for an effective vaccine to control and eradicate malaria, one of the most serious global infectious diseases. Plasmodium merozoite surface protein 4 (MSP4) has been listed as a blood-stage subunit vaccine candidate for malaria. Infection with Plasmodium ovale species including P. ovale wallikeri and P. ovale curtisi, is also a source of malaria burden in tropical regions where it is sometimes mixed with other Plasmodium species. However, little is known about P. ovale MSP4.MethodsThe msp4 gene was amplified through polymerase chain reaction using genomic DNA extracted from blood samples of 46 patients infected with P. ovale spp. and amplified products were sequenced. Open reading frames predicted as immunogenic peptides consisting of 119 and 97 amino acids of P. ovale curtisi MSP4 (PocMSP4) and P. ovale wallikeri MSP4 (PowMSP4), respectively, were selected for protein expression. Recombinant proteins (rPoMSP4) were expressed in Escherichia coli, purified, analysed, and immunized in BALB/c mice. The specificity of anti-MSP4-immunoglobulin (Ig) G antibodies was evaluated by Western blot and enzyme-linked immunosorbent assays, and cellular immune responses were analysed via lymphocyte proliferation assays.ResultsFull peptide sequences of PocMSP4 and PowMSP4 were completely conserved in all clinical isolates, except in the epidermal growth factor-like domain at the carboxyl terminus where only one mutation was observed in one P. o. wallikeri isolate. Further, truncated PoMSP4 segments were successfully expressed and purified as ~ 32 kDa proteins. Importantly, high antibody responses with end-point titres ranging from 1:10,000 to 1:2,560,000 in all immunized mouse groups were observed, with high IgG avidity to PocMSP4 (80.5%) and PowMSP4 (92.3%). Furthermore, rPocMSP4 and rPowMSP4 cross-reacted with anti-PowMSP4-specific or anti-PocMSP4-specific antibodies. Additionally, anti-PoMSP4 IgG antibodies showed broad immuno-specificity in reacting against rPoMSP1 and rPoAMA1. Lastly, PocMSP4- and PowMSP4-immunized mice induced cellular immune responses with PocMSP4 (36%) and PowMSP4 cells (15.8%) during splenocyte proliferation assays.ConclusionFindings from this study suggest conservation in PoMSP4 protein sequences and high immunogenicity was observed in rPoMSP4. Furthermore, induction of immune responses in PocMSP4- and PowMSP4-immunized mice informed that both humoral and cellular immune responses play crucial roles for PoMSP4 in protection.

Highlights

  • There is an urgent need for an effective vaccine to control and eradicate malaria, one of the most serious global infectious diseases

  • Analysis of amplified pomsp4 genes revealed conservation of amino acids in isolate sequences The full length of pomsp4 genes was successfully amplified from the genomic DNA of 23 P. o. curtisi and 23 P. o. wallikeri infected individuals

  • A phylogenetic tree was constructed through the neighbour-joining method based on human, non-human primate, murine, and avian malaria species to infer genetic relationships of pocmsp4 and powmsp4

Read more

Summary

Introduction

There is an urgent need for an effective vaccine to control and eradicate malaria, one of the most serious global infectious diseases. Three other parasitic species, namely, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi, can cause malaria infection. Plasmodium ovale can cause malaria infection in humans but has lower incidence compared with P. falciparum and P. vivax [6, 7]. Some cases of P. ovale infection can occur in endemic areas of malaria where other species co-exist [8, 9]; such evidence should be considered in malaria control strategies. Plasmodium ovale has been separated into two distinct species (P. ovale curtisi and P. ovale wallikeri) in 2010 [10,11,12]. Similar to other malaria parasites of primates, Anopheles species are able to transmit P. ovale; the parasites invade reticulocytes and begin the erythrocytic cycle that might last approximately 49 h [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call