Abstract

Whole tumor cell lysates consist of a mixture of tumor antigens and danger associated molecular patterns (DAMPs) that can be used for dendritic cell maturation and consequently for the activation of a polyclonal T cell-specific tumor response. We evaluated the in vitro efficacy of three different preparations of canine transmissible venereal tumor (TVT) cell lysates: hypochlorous acid-whole tumor cell lysates (HOCl-L), heat shock-whole tumor cell lysates (HS-L), and freeze-thaw cycles-whole tumor cell lysates (FT-L) for the maturation of canine-derived dendritic cells. Our results showed calreticulin, HSP70, and HSP90 release in the three tumor lysates preparations (HOCl-L, HS-L, and FT-L); however, HMGB1 was detected only in HOCl-L and FT-L. Additionally, the uptake by HOCl-L pulsed dendritic cell (DC) increased compared to HS-L and FT-L pulsed DC; and dendritic cell maturation was confirmed by the appropriate cell surface markers (CD11c, CD80, CD83, and MHCII). Furthermore, dendritic cells pulsed with HOCl-L, HS-L or FT-L were cultured with canine lymphocytes. There was an increase of Th1-type cytokines (IL-12, TNF-α, and IFN-γ), in all the tumor cell lysates co-cultures, this correlates with T lymphocyte activation and cytotoxic response. Our data confirm that TVT cell lysates can induce functional canine-DC and that HOCl-L is the most effective one. This preparation of TVT cell lysates with HOCl is an attractive approach that allows the recognition of neoantigens as potential tumor targets and DC priming and therefore could be used for cancer immunotherapy against TVT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.