Abstract

Application of dendritic cells (DCs) to prime responses to tumor Ags provides a promising approach to immunotherapy. However, only a limited number of DCs can be manufactured from adult precursors. In contrast, pluripotent embryonic stem (ES) cells represent an inexhaustible source for DC production, although it remains a major challenge to steer directional differentiation because ES cell-derived cells are typically immature with impaired functional capacity. Consistent with this notion, we found that mouse ES cell-derived DCs (ES-DCs) represented less mature cells compared with bone marrow-derived DCs. This finding prompted us to compare the gene expression profile of the ES cell- and adult progenitor-derived, GM-CSF-instructed, nonconventional DC subsets. We quantified the mRNA level of 17 DC-specific transcription factors and observed that 3 transcriptional regulators (Irf4, Spi-B, and Runx3) showed lower expression in ES-DCs than in bone marrow-derived DCs. In light of this altered gene expression, we probed the effects of these transcription factors in developing mouse ES-DCs with an isogenic expression screen. Our analysis revealed that forced expression of Irf4 repressed ES-DC development, whereas, in contrast, Runx3 improved the ES-DC maturation capacity. Moreover, LPS-treated and Runx3-activated ES-DCs exhibited enhanced T cell activation and migratory potential. In summary, we found that ex vivo-generated ES-DCs had a compromised maturation ability and immunogenicity. However, ectopic expression of Runx3 enhances cytokine-driven ES-DC development and acts as an instructive tool for the generation of mature DCs with enhanced immunogenicity from pluripotent stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.