Abstract

OGG1 is a major DNA glycosylase in mammalian cells, participating in the repair of 7,8-dihydro-8-oxoguanine (8-oxoguanine, 8-oxoG), the most abundant known DNA lesion induced by endogenous reactive oxygen species in aerobic organisms. 8-oxoG is therefore often used as a marker for oxidative DNA damage. In this study, polyclonal and monoclonal antibodies were raised against the purified wild-type recombinant murine 8-oxoG DNA glycosylase (mOGG1) protein and their specificity against the native enzyme and the SDS-denatured mOGG1 polypeptide were characterized. Specific antibodies directed against the purified wild-type recombinant mOGG1 were used to localize in situ this DNA repair enzyme in established cell lines (HeLa cells, NIH3T3 fibroblasts) as well as in primary culture mouse embryo fibroblasts growing under either normal or oxidative stress conditions. Results from these studies showed that mOGG1 is localized to the nucleus and the cytoplasm of mammalian cells in culture. However, mOGG1 levels increase and primarily redistribute to the nucleus and its peripheral cytoplasm in cells exposed to oxidative stress conditions. Immunofluorescent localization results reported in this study suggest that susceptibility to oxidative DNA damage varies among mammalian tissue culture cells and that mOGG1 appears to redistribute once mOGG1 cell copy number increases in response to oxidative DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.