Abstract

Production of free radicals in animals is accompanied with a number of pathologic conditions, some of which may be manifested through DNA damage. Studies of mechanisms of oxidative DNA damage by free radicals in vivo are hindered by the lack of good animal models with significant overgeneration of or increased sensitivity to free radicals. An inbred rat strain (OXYS) is characterized by inherited overgeneration of free radicals, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases. We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative age-dependent amounts and distribution of 8-oxoG in liver cells from OXYS and Wistar rats. 8-OxoG increased with age in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. Statistical analysis indicates that 8-oxoG does not uniformly accumulate in all cells with advancing age or increasing free radical load, but rather concentrates in a minor fraction of cells with a high damage level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.