Abstract

A neutral and basic amino acid transporter (NBAT) cloned from rat kidney was recently localized to enteroendocrine cells and enteric neurons. We used an antibody directed against a synthetic peptide representing a putative extracellular domain of NBAT to determine whether this transporter was also present in other endocrine and neural tissues, including rat adrenal gland, brainstem, and spinal cord. Abundant, highly granular labeling for NBAT was observed in the cytoplasm of chromaffin and ganglion cells in the adrenal medulla. A small population of intensely labeled varicose processes was also seen in both the cortex and the medulla of the adrenal gland. More numerous, intensely labeled varicose processes were detected in brainstem and spinal cord nuclei, including the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, dorsal motor nucleus of the vagus, and intermediolateral cell column of the thoracic spinal cord. Significant perikaryal labeling for NBAT was only detected in brainstem and spinal cord following intraventricular colchicine treatment, which increased the number, distribution, and intensity of NBAT-immunolabeled cells. These NBAT-immunoreactive perikarya were most numerous in the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, and raphe nuclei. Ultrastructural examination of the nuclei of the solitary tract of normal rats showed that NBAT was localized predominantly to axon terminals. Within these labeled terminals, NBAT was associated with large dense core vesicles and discrete segments of plasma membrane. The observed localization of NBAT suggests that this renal specific amino acid transporter subserves a role as a vesicular or plasmalemmal transporter in monoamine-containing cells, including chromaffin cells and autonomic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.