Abstract

It is a common misconception that bats are blind, and various studies have suggested that bats have visual abilities. The purpose of this study was to investigate the cytoarchitecture of calbindin D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-immunoreactive (IR) neurons in the bat visual cortex using immunocytochemistry. The highest density of CB- and PV-IR neurons was located in layer IV of the visual cortex. The majority of CB- and PV-IR neurons were characterized by a stellate or round/oval shape. CR-IR neurons were predominantly located in layers II/III, and the cells were principally round/oval in shape. Two-color immunofluorescence revealed that 65.96%, 24.24%, and 77.00% of the CB-, CR-, and PV-IR neurons, respectively, contained gamma-aminobutyric acid (GABA). We observed calcium-binding protein (CBP)-IR neurons in specific layers of the bat visual cortex and in specific cell types. Many of the CBP-IR neurons were GABAergic interneurons. These data provide useful clues to aid in understanding the functional aspects of the bat visual system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.