Abstract
Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.