Abstract

This paper reports the pattern of labeling in the cat superior colliculus produced by an antiserum raised against BSA-conjugated gamma aminobutyric acid (GABA) and visualized by light and electron microscope immunocytochemistry. Neuropil labeling was densest within the zonal and superficial gray layers but was also found in the deep layers. Neurons labeled by the GABA antibody were also most dense within the zonal and superficial gray layers, although many labeled neurons were also found in the deeper layers. The ratio of labeled to unlabeled cells varied from an average of 45% in the superficial subdivision and the intermediate gray layer to less than 30% in the deeper laminae. Almost all intensely labeled cells were small (mean area = 127 micron 2) and had varied morphologies. Several types of labeled cell were observed with the electron microscope. One type had a horizontal, fusiform cell body and a deeply invaginated nucleus. Another type had a small round or ovoid cell body with cytoplasm clumped at one end. Labeled cells with other morphologies were also occasionally seen. No labeled glial cells were found. Two types of vesicle-containing dendrite were stained by the GABA antibody. One type had loose accumulations of small synaptic vesicles and often received input from retinal terminals. Another type had spines also containing small synaptic vesicles. Labeled dendrites without synaptic vesicles were also seen frequently. Putative axon terminals labeled by the GABA antibody had densely packed synaptic vesicles and formed symmetric synaptic contacts. Labeled myelinated axons were also commonly found. These results confirm those using uptake of tritiated GABA (Mize et al.: J. Comp. Neurol. 202:385-396, '81, J. Comp. Neurol, 206:180-192, '82) in that two of the same classes of GABA neuron, horizontal I and granule I cells, were identified in the superficial laminae. However, the GABA antiserum used in this study also revealed a third class of GABA neuron with vesicle-containing spines. The antiserum also labeled a significant number of putative GABAergic neurons located in the deep subdivision of the cat superior colliculus which were not previously recognized by using transmitter autoradiography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.