Abstract

The purpose of the present study was to investigate the organization of choline acetyltransferase (ChAT)-immunoreactive (IR) fibers in the visual cortex of the microbat, using standard immunocytochemistry and confocal microscopy. ChAT-IR fibers were distributed throughout all layers of the visual cortex, with the highest density in layer III and the lowest density in layer I. However, no ChAT-IR cells were found in the microbat visual cortex. ChAT-IR fibers were classified into two types: small and large varicose fibers. Previously identified sources of cholinergic fibers in the mammalian visual cortex, the nucleus of the diagonal band, the substantia innominata, and the nucleus basalis magnocellularis, all contained strongly labeled ChAT-IR cells in the microbat. The average diameter of ChAT-IR cells in the nucleus of the diagonal band, the substantia innominata, and the nucleus basalis magnocellularis was 16.12 μm, 13.37 μm, and 13.90 μm, respectively. Our double-labeling study with ChAT and gamma-aminobutyric acid (GABA), and triple labeling with ChAT, GABA, and post synaptic density 95 (PSD-95), suggest that some ChAT-IR fibers make contact with GABAergic cells in the microbat visual cortex. Our results should provide a better understanding of the nocturnal bat visual system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call