Abstract

Reaggregate cultures were obtained from single-cell suspensions of fetal and early postnatal cerebellum, and fetal telencephalon and mesencephalon from C57BL/6J and NMRI mice and maintained in suspension under constant rotation as described previously (Seeds 1971). The percentage of dead cells in the aggregates as measured by the uptake of the fluorescent dye propidium iodide was always less than 5% of all cells. During the initial phase of reaggregation up to 20 h in vitro (hiv) several immunocytochemically defined cell types had a random distribution within the aggregate. Astrocytes were identified by indirect immunofluorescence by the use of the markers glial fibrillary acidic protein (GFAP), C1 and M1 antigens; neurons by NS-4 antigen and tetanus-toxin receptors; fibroblasts or fibroblast-like cells by fibronectin and laminin; and oligodendrocytes by myelin basic protein (MBP). Choleratoxin receptors and M 2 antigen served to distinguish the more mature from the less mature neurons. In reaggregates of early postnatal cerebellar cells neurons had started to redistribute after 40 hiv, forming an outer region containing more immature neurons and a core with more mature neurons. After 5 days in vitro (div) immature neurons were no longer detectable. From 3–8 div M1-and GFAP-positive astrocytic processes in the outer region showed a tendency for radial orientation. At later stages the processes appeared more randomly distributed and formed a dense glial network. Few oligodendrocytes and fibronectin-positive cells were present in the reaggregates. When reaggregates were prepared from 15 day-old embryonic cerebella, formation of radially oriented astrocytic processes and redistribution of neurons proceeded more slowly, but in a similar pattern as described for early postnatal cerebellum. GFAP was detectable at earlier ages than in situ. In reaggregates of 15 to 17 day old embryonic telencephalic anlage or midbrain, radially oriented astrocytic processes were not detectable. Similar to cerebellar reaggregates, accumulation of neurons in the inner region was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call