Abstract

As a follow-up to our previous study on the role of myosin light-chain kinase (MLCK), a Ca2+/calmodulin-dependent enzyme, in the development of preimplantation mouse embryos, we examined the presence and pattern of distribution of MLCK during preimplantation development of the mouse by whole-mount, indirect immunocytochemistry and by Western blotting, using a monoclonal antibody against MLCK. At all stages of preimplantation development, the nucleus was brightly stained with an unstained region around the nucleus, and regions near the cell membrane were also brightly stained. Using the optical sectioning capability of the confocal laser scanning microscope, we found that, up to the eight-cell stage, the regions of cell contact were mostly unstained, but along with the process of compaction, cell contact regions showed a clear staining pattern along with clearing of the cytoplasm. During formation of the blastocyst, a ring of immunofluorescence was found at the margin of the blastocoel. In the blastocyst, cells of the inner cell mass were less immunofluorescent than trophectoderm cells. These staining results appear to be due to specific immunoreaction between MLCK and the antibody, because the staining patterns were abolished when the antibody was preabsorbed by MLCK purified from chicken gizzard smooth muscle. In Western blotting of blastocysts, we found a band at 130 kD. We also show by immunoblotting and immunohistochemistry of various mouse tissues that the antibody used in this study has cross-reactivity to MLCK of various muscle and non-muscle tissues of the mouse. The presence and spatial distribution of MLCK at various stages of preimplantation development of the mouse suggest that it could play a crucial role in the regulation of the contractile events involved in the initial differentiation that occurs during formation of the mouse blastocyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call