Abstract

Changes in myosin synthesis during the postnatal development of the fast extensor digitorum longus (EDL) and the slow soleus muscles of the kitten were examined using immunocytochemical techniques supplemented by pyrophosphate gel electrophoresis and gel electrophoresis-derived enzyme linked immunosorbent assay (GEDELISA) of myosin isoforms. The antibodies used were monoclonals against heavy chains of slow and fast myosins and a polyclonal against foetal/embryonic myosin. In both muscles in the newborn kitten, there was a population of more mature fibres which stained strongly for slow but weakly for foetal/embryonic myosin. These fibres were considered to be primary fibres. They formed 4.8% of EDL fibres and 26% of soleus fibres at birth, and continued to express slow myosin in adult muscles. The less mature secondary fibres stained strongly for foetal/embryonic myosin, and these could be divided into two subpopulations; fast secondaries in which foetal/embryonic myosin was replaced by fast myosin, and slow secondaries in which the myosin was replaced by slow myosin. At 50 days the EDL had a large population of fast secondaries (83% of total fibres) and a small population of slow secondaries which gradually transformed into fast fibres with maturity. The vast majority of secondary fibres in the soleus were slow secondaries, in which slow myosin synthesis persisted in adult life. There was a restricted zone of fast secondaries in the soleus, and these gradually transformed into slow fibres in adult life. It is proposed that the emergence of primary fibres and the two populations of secondary fibres is myogenically determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.