Abstract
Highly luminescent quantum dot beads (QBs) were synthesized by encapsulating CdSe/ZnS and used for the first time as immunochromatographic assay (ICA) signal amplification probe for ultrasensitive detection of aflatoxin B1 (AFB1) in maize. The challenges to using high brightness QBs as probes for ICA are smooth flow of QBs and nonspecific binding on nitrocellulose (NC) membrane, which are overcome by unique polymer encapsulation of quantum dots (QDs) and surface blocking method. Under optimal conditions, the QB-based ICA (QB-ICA) sensor exhibited dynamic linear detection of AFB1 in maize extract from 5 to 60 pg mL–1, with a median inhibitory concentration (IC50) of 13.87 ± 0.16 pg mL–1, that is significantly (39-fold) lower than those of the QD as a signal probe (IC50 = 0.54 ± 0.06 ng mL–1). The limit of detection (LOD) for AFB1 using QB-ICA sensor was 0.42 pg mL–1 in maize extract, which is approximately 2 orders of magnitude better than those of previously reported gold nanoparticle based immunochromatographic assay (AuNP-ICA) and is even comparable with or better than the conventional enzyme-linked immunosorbent assay (ELISA) method. The performance and practicability of our QB-ICA sensor were validated with a commercial ELISA kit and further confirmed with liquid chromatography tandem mass spectrometry (LC–MS/MS). Given its efficient signal amplification performance, the proposed QB-ICA offers great potential for rapid, sensitive, and cost-effective quantitative detection of analytes in food safety monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.