Abstract

The possible immunochemical and functional similarities existing among adrenal ferrdoxin-like iron-sulfur proteins present in the mitochondria of mammalian steroidogenic tissues have been examined by employing a goat antibody produced against homogeneous bovine adrenal ferredoxin. This antibody was found to inhibit the NADPH-cytochrome c reductase and cholesterol side-chain cleavage activities catalyzed by mitochondria prepared from rat adrenals, rat ovaries and the testes of rats which had been treated with human chorionic gonadotropin. No inhibition of the NADH-dependent reduction of cytochrome c catalyzed by these mitochondria was observed in the presence of the anti-adrenal ferredoxin. These results demonstrate that adrenal ferredoxin and the comparable iron-sulfur proteins of ovarian and testicular mitochondria are immunochemically similar and are required for the cholesterol side-chain cleavage reaction occurring in these tissues. Although a precipitin reaction was observed upon double diffusion of the anti-adrenal ferredoxin against human term placental mitochondria, no inhibition of either the NADPH-cytochrome c reductase or the cholesterol side-chain cleavage 4 activity catalyzed by preparations of these mitochondria was observed in the presence of the antibody. These results indicate that the iron-sulfur protein present in human placental mitochondria at term differs immunochemically from other mammalian adrenal ferredoxin-like iron-sulfur proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.