Abstract

Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein-a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets.

Highlights

  • From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; ʈLunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; **Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Canada

  • The fusion of murine splenocytes with murine myeloma cells resulted in the generation of 167 IgG-secreting hybridoma colonies, with 60 antibodies reacting with recombinant testis-expressed sequence 101 (TEX101)

  • Immunocapture-selected reaction monitoring (SRM) revealed that 18 colonies produced antibodies that could bind to the native form of TEX101 present in seminal plasma (Fig. 2A)

Read more

Summary

Introduction

From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; ʈLunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; **Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Canada. We report the capability of an immunocapture-SRM assay to facilitate fast screening of hybridoma cultures for monoclonal antibodies that recognize the native conformation of testis-expressed sequence 101 (TEX101)1 protein in biological fluids. We describe the production of mouse monoclonal antibodies against native TEX101, screening of antibody-producing clones by the two-step immunocapture and SRM assay, development of a sensitive ELISA and measurement of TEX101 in seminal plasma and serum (Fig. 1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.