Abstract

Loop-mediated isothermal amplification (LAMP) is a sensitive method that can rapidly amplify a specific nucleic acid target with high specificity. The LAMP reaction process has no denaturation step, instead DNA amplification occurs by strand displacement activity of the Bacillus stearothermophilus (Bst) DNA polymerase under isothermal conditions. It utilizes three sets of forward and reverse oligonucleotide primers specific to six distinct sequences on the target gene. These primers are used to generate amplification products that contain single-stranded loops, thereby allowing primers to bind to these sequences without the need for repeated cycles of thermal denaturation. For diagnosis of pathogens with RNA genome, LAMP has been merged with reverse transcription (RT) step to create RT-LAMP. To further reduce the cost of diagnosis and increase the throughput, immunocapture (IC) step was added to develop IC-RT-LAMP assay. Hence, this chapter focuses on utilizing IC-RT-LAMP assay to specifically identify severe strain of a plant virus from field samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.