Abstract

Immunotherapy, as a form of immunobiological therapy, represents a promising approach for enhancing patients' immune responses. This work aims to present innovative ideas and insights for prognostic assessment and clinical treatment of stomach adenocarcinoma (STAD) by leveraging immunobiological signatures. We employed weighted gene co-expression network analysis (WGCNA) and unsupervised clustering analysis to identify hub genes. These hub genes were utilized to construct a prognostic risk model, and their impact on the tumor microenvironment (TME) and DNA variations was assessed using large-scale STAD patient cohorts. Additionally, we conducted transfection experiments with plasmids to investigate the influence of SPP1 on the malignancy of HGC27 and NCI-N87 cells. Unsupervised clustering of 12 immune-related genes (IRGs) revealed three distinct alteration patterns with unique molecular phenotypes, clinicopathological characteristics, prognosis, and TME features. Using LASSO and multivariate Cox regression analyses, we identified three hub genes (MMP12, SPP1, PLAU) from the IRGs to establish a risk signature. This IRG-related risk model significantly stratified the prognosis risk among STAD patients in the training (n = 522), testing (n = 521), and validation (n = 300) cohorts. Notably, there were discernible differences in therapy responses and TME characteristics, such as tumor purity and lymphocyte infiltration, between the risk model groups. Subsequently, a nomogram that incorporates the IRG signature and clinicopathological factors demonstrated superior sensitivity and specificity in predicting outcomes for STAD patients. Furthermore, down-regulation of SPP1, as observed after siRNA transfection, significantly inhibited the proliferation and migration abilities of HGC27 and NCI-N87 cells. In summary, this study highlights the critical role of immune-related signatures in STAD and offers novel insights into prognosis indicators and immunotherapeutic targets for this condition. SPP1 emerges as an independent prognostic factor for STAD and appears to regulate STAD progression by influencing the immune microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call