Abstract

Photodynamic compounds have great potential in biological applications. Their controlled and localized activation with specific wavelength of light provides opportunities to potentially evade the side effects of today's cancer therapies. Biologically compatible photosensitizers can be used in therapy against cancer, infections as well as inflammatory and immune disorders. In this study, we examined chlorophyll derivatives for anti-microbial, immunostimulatory and immunomodulatory activities. Under dark conditions, these chlorophyll derivatives had strong anti-microbial activities on gram positive S.aureus and gram negative E.coli. Photo activation of the chlorophyll derivatives did not alter their anti-microbial activities on gram negative or gram positive bacteria. In order to examine how these anti-microbial chlorophyll derivatives might effect immune reaction of macrophages, they were tested on mammalian macrophages. They had immunostimulatory activities on them in the dark conditions since they led to increased TNF and IL6 cytokine production even in the absence of stimulants lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Photo-activation of the compounds led to decrease in pro-inflammatory cytokines, TNF and IL6, production by LPS or LTA activated macrophages. Therefore, these molecules can be used to regulate the immune response in the patients with bacterial infection while leading to death of bacteria. Light induced activation of the compounds could enable localized and controlled activation of their anti-inflammatory effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call