Abstract

Monoclonal antibodies (mAbs) are currently used as therapeutic agents in different types of cancer. However, mAbs and antibody fragments developed so far show suboptimal properties in terms of circulation time and tumor penetration/retention. Here, we report the radiolabeling, pharmacokinetic evaluation, and determination of tumor targeting capacity of the previously validated anti-CEA MFE23-scFv-based N-terminal trimerbody (MFE23N-trimerbody), and the results are compared to those obtained for the monomeric MFE23-scFv. Dissection and gamma-counting studies performed with the 131I-labeled protein scaffolds in normal mice showed slower blood clearance for the trimerbody, and accumulation in the kidneys, the spleen, and the liver for both species. These, together with a progressive uptake in the small intestine, confirm a combined elimination scheme with hepatobiliary and urinary excretion. Positron emission tomography studies performed in a xenograft mouse model of human gastric adenocarcinoma, generated by subcutaneous administration of CEA-positive human MKN45 cells, showed higher tumor accumulation and tumor-to-muscle (T/M) ratios for 124I-labeled MFE23N-trimerbody than for MFE23-scFv. Specific uptake was not detected with PET imaging in CEA negative xenografts as indicated by low T/M ratios. Our data suggest that engineered intermediate-sized trivalent antibody fragments could be promising candidates for targeted therapy and imaging of CEA-positive tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.