Abstract

BackgroundThe cause of past plague pandemics was controversial but several research teams used PCR techniques and dental pulp as the primary material to reveal that they were caused by Yersinia pestis. However, the degradation of DNA limits the ability to detect ancient infections.MethodsWe used for the first time immuno-PCR to detect Yersinia pestis antigens; it can detect protein concentrations 70 times lower than the standard ELISA. After determining the cut-off value, we tested 34 teeth that were obtained from mass graves of plague, and compared previous PCR results with ELISA and immuno-PCR results.ResultsThe immuno-PCR technique was the most sensitive (14 out of 34) followed by the PCR technique (10 out of 34) and ELISA (3 out of 34). The combination of these three methods identified 18 out of 34 (53%) teeth as presumably being from people with the plague.ConclusionImmuno-PCR is specific (no false-positive samples were found) and more sensitive than the currently used method to detect antigens of ancient infections in dental pulp. The combination of three methods, ELISA, PCR and immuno-PCR, increased the capacity to identify ancient pathogens in dental pulp.

Highlights

  • Since its first description in 1993 with the molecular detection of Mycobacterium tuberculosis DNA in an ancient human skeleton [1], paleomicrobiology has become a burgeoning field allowing the identification and characterization of microorganisms in ancient specimens [2,3]

  • Based on the description of outbreaks associated with bubonic lesions, 3 devastating plague pandemics have been identified: the Justinian plague (AD541–AD750), the medieval Black Death and the current pandemic starting in 1855 [4]

  • The cut-off value was calculated as the mean of the negative control plus 2SD, resulting in a detection limit of 50 ng of Y. pestis antigen diluted in PBS

Read more

Summary

Introduction

Since its first description in 1993 with the molecular detection of Mycobacterium tuberculosis DNA in an ancient human skeleton [1], paleomicrobiology has become a burgeoning field allowing the identification and characterization of microorganisms (viruses, bacteria and parasites) in ancient specimens [2,3]. Paleomicrobiology permits the identification of causative agents of past infectious diseases and the temporal and geographical distribution of infected groups and traces the genetic evolution of microorganisms [4]. It benefits modern microbiology by the invention of new diagnostic techniques including the dental pulp study, the suicide PCR and the Multiple Spacer Sequencing Typing (MST) and changes in infectious disease paradigms, including that bovines were not source of prehistorically human tuberculosis [4,5]. The degradation of DNA limits the ability to detect ancient infections

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.